If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2+4n=0
a = 10; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·10·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*10}=\frac{-8}{20} =-2/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*10}=\frac{0}{20} =0 $
| -3x/8=-6 | | 6x+12+4x-1=-x-7+12-3x+5 | | -6=2/7w | | -5y/3=30 | | (2x)^-3=64 | | 4^x2=7 | | Y=x^2+4x-150 | | –4x+3=8x–21 | | (n+24)/3=n | | 17-29x=158 | | 30*x=48*90 | | 30/48=40/x | | 30*132=48*y | | 2x^2+20x-8400=0 | | 2x^2+20x+8400=0 | | n-24=n/3 | | 5r/6=7/6 | | x-0.18x=255.56 | | x-0.18x=315.32 | | x-0.18x=280.06 | | .5(y–2)=35 | | x-0.18x=211.96 | | p=10000*(1+0.05)4 | | 12x2+14x+12=18 | | 4t^2+36=24t | | 4x^+19x+17=0 | | 5x-35+60=0 | | 4x-x=400 | | x+(.12*x)=200000 | | 3b^2-2b-1=0 | | x-0.12x=200000 | | 10=1/(0.92+(0.08/x)) |